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Abstract - Driving while texting is risky as it diverts the driver's attention from the road and requires them to shift between 

handling their phone and the vehicle. Despite its dangers, many still engage in this behaviour. To address this, some 

companies have implemented features to detect when someone is driving and restrict calls and messages unless confirmed 

otherwise by the user. This research introduces a method that combines eye-tracking technology with machine learning to 

identify when a driver is texting. A driving simulator was utilized to evaluate 26 participants under various conditions: normal 

driving, emotional distraction, cognitive distraction, and texting. Features were extracted from the eye movement data, 

encompassing fixation count and duration. After processing this data through machine learning models, an impressive 

accuracy rate of over 90% for identifying texting while driving. These findings are promising and hint at the potential for a 

realtime system that can detect and warn drivers when they are engaged in texting. 
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1. Introduction 
Texting while driving is one of the common distractions 

that can potentially result in fatal accidents and near-death 

experiences. Many studies have documented that distracted 

driving, including texting, significantly increases the chances 

of accidents [1][3][7][8]. This finding has prompted the 

prohibition of cell phone usage while driving in many states 

across the United States. A recent report from the National 

Highway Traffic Safety Administration (NHTSA) reported 

that using a cell phone while driving creates enormous 

potential for deaths and injuries on the roads in the United 

States [7]; in 2020 alone, a total of 3,142 people were killed 

in motor crashes involving distracted drivers. 

 

One potential solution to mitigate the risk of distracted 

driving is to identify such behaviour as early as possible in 

real time. Different machine learning algorithms have been 

used to predict driver distraction. A few are mentioned here: 

Kircher & Ahlstrom used logistic regression to predict 

driver’s distraction based on the driving performance 

indicators [4]. Ragab et al. used random forest to detect the 

driving distraction [9]. Liang et al. proposed a realtime 

system for driver’s cognitive distraction using support vector 

machines [5]. The same group proposed a Bayesian 

networks-based distraction detection system [6]. These 

approaches mainly focused on detecting visual distractions, 

such as adjusting in-vehicle devices (e.g., tuning radio) or 

detecting cognitive distractions like cell phone conversations 

while driving. However, less attention has been given to the 

automatic detection of texting distraction, primarily a 

combination of visual distraction (eyes off the road) and 

sensorimotor distraction (one hand moving between the car 

controls and the smartphone). 

 

This paper addresses the research gap in detecting 

texting distractions automatically through eye-tracking data. 

Most research work that reviewed the eye-tracking approach 

focused on various driving distractions but not specifically 

texting distractions [11][12][13][14]. Recarte and Nunes 

reported the impact of verbal and spatial imagery tasks, such 

as repeating words and mental image rotation, on eye 

fixations while driving [11]. Strayer et al. used eye-tracking 

data to study the effect of hands-free cell phone conversation 

on visual attention [12]. Sodhi and Reimer analysed fixation 

durations for radio-tuning and rear-view mirror-checking 

tasks [13]. Victor et al. studied eye movement data for visual 

and auditory in-vehicle tasks [14]. Bitkina at el. suggested 

that the driver’s fatigue and workload is based on gaze 

behaviour and eye tracking metric could be utilized for 

predictions [16]  

 

Thus, detecting texting distracted driving in real time 

remains an open challenge. This paper aims to contribute to 

this area of research. A machine learning-based approach is 

proposed in this work, which first extracts multiple features 
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from the drivers’ eye-tracking data, examines the features for 

statistical significance, and finally feeds the features that pass 

the significance test to a set of machine learning algorithms. 

The following sections explain the approach taken to answer 

this. 

2. Experimental Design 
The participants were recruited from Bryan and College 

Station, TX communities. All the participants had at least 1.5 

years of driving experience and a valid driver’s license and 

were not on medications which might affect their ability to 

drive safely. Participants were in 2 age groups, young 

cohorts 18-27 years and old cohorts above 60 years of age. 

The personality type A/B using Jenkins Activity Survey [15] 

is scored for each participant. Additionally, trait anxiety 

inventory (TAI) is also noted for each participant to see the 

effects of long-term stress on driving behaviour or eye 

movements. 

 

The driving performance data is collected using a high-

fidelity simulator manufactured by Realtime- Technologies, 

Inc. Eye tracking data was collected unobstructed using two 

components, a light source and a camera. The Institutional 

Review Boards (IRB) of the University of Houston and 

Texas A&M University approved the experimental 

procedures. The light source is directed towards the eye, and 

the camera tracks the reflection of the light source along 

with ocular features such as the pupil. 

Fig. 1 Simulated driving setup 

In the simulated driving setup, each participant drove 

along a 10.9 km long track with two lanes in each direction. 

The simulated environment was designed in a daylight 

setting where there were no cars to follow, only oncoming 

traffic (>12 vehicles per km), no traffic lights or stop signs 

during each session (except at the beginning), the posted 

speed limit of 45 mph on which participants drove for about 

12-14 min per session with realistic highway view including 

construction zones, lane marks, construction cones etc. The 

simulator used 3 screens, one on each side and the middle 

screen about ∼ 3.5 ft away from the participant. All screens 

were displayed at 1920px. × 1080px. resolution. The eye 

gaze locations were recorded at 60 Hz from the top-right 

corner of the middle screen, which approximates about 90◦ 

visual field for a participant on that screen. Driving 

parameters like speed, acceleration, steering angle, lane 

position and braking were recorded at 42 Hz. 
 

Using the driving environment, as explained earlier, the 

participants were asked to drive. Each participant went for 

four different sessions: normal, cognitive, emotional, and 

driving while texting. The order of these four driving 

sessions was randomized. The secondary activity was 

triggered by questionnaires by an experimenter for cognitive 

and emotional distractions. A sensorimotor was used for 

texting by sending back words to participants smart phones. 

There was a 2-minute break between each session of the 

drive. Each session of the drive was designed in the 

following pattern. 

N1: No distraction (about 80 sec) 

D1: Driving distraction (about 160 sec) 

N2: No distraction (240 sec) 

D2: Driving distraction (about 160 sec) 

N3: No distraction (about 120 sec) 
 

Out of these 5 phases, phases D1 and D2 were used for 

analysis. D1 and D2 of each distracted driving were 

compared against corresponding driving periods in the 

baseline driving session. 

 

2.1. Texting Distraction 

During each distracted driving phase (D1 and D2), the 

participants received one word at a time on the smartphone. 

The participants were asked to type each word in the 

backward order and send as they received. 
 

2.2. Cognitive Distraction 

The participants were asked a set of mathematical 

questions in one of the two distracted driving phases (D1 and 

D2) and a set of analytical questions in the other distracted 

driving phase. The experimenter asked these questions 

orally. The order of the phases was randomized.  
 

An example of the mathematical question is: What is the 

sum of 24 + 58? An example of the analytical question is My 

grandfather’s daughter hit her daughter. How do the 

daughters relate to each other? The participants were 

required to answer these questions to the best of their 

abilities. 

 

2.3. Emotional Distraction 

During each of the two distracted driving phases (D1 

and D2), the participants were asked a set of emotionally 

charged questions by the experimenter, such as Give an 

example of a time when you were angry with someone in the 

past and realized it was not their fault? The participants were 

required to answer these questions to the best of their 

abilities. 
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3. Data Collection and Feature Extraction 
Eye-tracking data from 26 participants were used in the 

analysis. The participants were in two age groups: 15 young 

cohorts (9 female) of ages ranging from 21 to 27 years (mean 

= 22.67, std. dev. = 1.80), and 11 old cohorts (6 females) of 

ages ranging from 61 to 73 years (mean = 67.18, std. dev. = 

4.45). These participants collected 4.74 million eye gaze data 

points (60 points per second × 760 seconds per participant × 

26 participants × 4 drives). From these raw data, we derived 

a set of eye movement features. A statistical significance test 

was conducted on these features, and finally, the parts that 

passed the statistical significance test to machine learning 

classifiers. 

 
Fig. 2 The plot shows 10 seconds of the eye gaze data in the light gray 

coloured dots and the fixations in red circles. The fixations are 

computed from the dispersion-threshold algorithm [2]. The size of the 

red circles represents fixation duration. Fixation count represents the 

number of these red circles. Saccade duration is the time duration 

between two successive red circles 

Dispersion-threshold-based algorithm extracted three 

features: fixation count, fixation duration, and saccadic 

duration [2]. For a given eye gaze location (x, y), the 

algorithm grouped successive gaze locations if the 

participant was within 20 20-pixel radius from the given 

point. To qualify this group of gazes as fixation, participants 

had to meet a minimum duration of 200 milliseconds (ms), 

about 12 successive gaze locations [2]. Otherwise, the group 

was discarded.  

 

The algorithm was applied iteratively to the entire eye 

gaze dataset for fixation computation. The saccades were 

calculated as a time duration between two successive 

fixations. The data was noise-cleaned for spurious fixations 

(fixation duration > 2.5s) and spurious saccades (saccadic 

duration > 800ms) [2]. The thresholds were chosen 

according to the suggestions given in [2]. Figure 1 provides 

a visual illustration of the algorithm for 10 seconds of the 

eye gaze data. 

 

4. Results and Discussion 
4.1.  Distracted Driving vs Baseline Driving 

Next, the D1 portion of distracted driving was compared 

to the corresponding portion in normal driving (ND1). A 

similar comparison with the D2 portion against the 

corresponding portion in normal driving (say ND2). Each 

distracted driving phase (D1 and D2) had a slightly different 

corresponding normal driving portion (ND1 and ND2) 

because of the variability in each participant’s driving speed. 

In the rest of the paper, the emotionally distracted driving 

phases D1 and D2 were noted as E1 and E2, respectively, 

and the corresponding typical driving phases ND1 and ND2 

as NE1 and NE2, respectively. Similar notations for 

cognitive and texting distractions were used. For cognitively 

distracted driving, phases D1 and D2 are C1 and C2, and the 

corresponding typical driving phases ND1 and ND2 are NC1 

and NC2, respectively. Likewise, the texting distracted 

driving phases D1 and D2 are denoted as T1 and T2, and the 

corresponding typical driving phases ND1 and ND2 are 

distinguished as NT1 and NT2. 

 

For each driving phase, fixation count was calculated, 

representing the total number of fixations per participant in 

each driving segment and fixation duration, which represents 

the mean of each participant’s fixation durations for each 

driving segment. These two features are visualized in Fig 1, 

in which the number of red circles represents fixation count, 

and the size of the circle represents fixation duration. From 

the saccades, saccadic duration representing the mean of 

each participant’s time duration was calculated between two 

successive fixations for each driving segment. 

Fixation Count 

 

   
Fig. 3 Boxplots illustrate fixation count for normal driving and 

driving with distractions. n = 26 participants. The p-values for the 

paired t-tests are shown at the top of the box- plots. The 

differences are statistically significant, with 99% confidence 

interval for texting distractions. 
 

4.2. Distracted Driving vs. Baseline Driving 

A paired t-test was performed to examine whether any 

of the three eye movement features could reveal any 
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statistically significant difference between distracted driving 

and typical driving phases. Specifically, emotionally 

distracted driving phases E1 and E2 were compared against 

the corresponding distinct driving phases NE1 and NE2. 

Similarly, cognitively distracted driving phases C1 and C2 

were compared against the corresponding normal driving 

phases NC1, and NC2, respectively. Likewise, texting 

distracted driving phases T1 and T2 were compared against 

the corresponding normal driving phases NT1 and NT2, 

respectively. 

 

Fig 3 illustrates the distributions of the participant’s 

fixation count for the normal driving and the three distracted 

driving sessions. The p-values of the statistical tests are 

reported on the top of the plots. The results reveal that in 

comparison to normal driving, the participants had their eyes 

on the road significantly a smaller number of times (p < 

0.01) during the texting distracted driving (T1, T2). This 

confirms a typical behaviour: drivers look away from the 

road while texting. For the other two distracted drives (i.e., 

cognitive C1, C2 and emotional E1, E2), the fixation count 

distributions are like that of the normal drives (p > 0.05), 

indicating that the participants don’t look away from the 

road under the cognitive and emotional distractions. 

 

Fixation Duration 

 
 

 
Fig. 4 Boxplots illustrate fixation duration for normal driving and 

driving with distractions. n = 26 participants. The p-values for the 

paired t-tests are shown at the top of the box plots. The differences 

are statistically significant, with 99% confidence interval for the 

texting 

Fig 4 illustrates the distributions of the participant’s 

fixation duration for the distracted and normal drives. The p-

values of the statistical tests are reported on the top of the 

plots. The results reveal an interesting pattern; compared to 

normal driving, the participants fixated on the road longer 

while texting but not on the other two distractions. A 

possible justification for this behaviour is that, by looking on 

the road for a more extended period, the participants were 

compensating for the missing information about the 

surroundings they were supposed to acquire while looking at 

the cellphone screen for texting. It is interesting to find out 

how this behaviour affected their driving performance. Fig 6 

compares participants’ driving performance for the regular 

drive and distracted drives. The p-values of the statistical 

tests are reported on the top of the plots. It shows that the 

participants had significantly more significant lane 

departures (p < 0.01) while texting (T1, T2). Furthermore, 

the participants lower the acceleration (T1: p < 0.1; T2: p < 

0.01) and drive slower (p < 0.01) while texting. These 

observations indicate that texting creates dangerous driving 

behaviour (lane departure), while drivers either consciously 

or subconsciously compensate for this riskier behaviour by 

slowing down (acceleration and speed). 

 
Saccade Duration 

 

 
Fig. 5 Boxplots illustrate saccade duration for normal driving and 

driving with distractions. n = 26 participants. The p-values for the 

paired t-tests are shown at the top of the box plots. None of the 

differences are statistically significant 

Fig 5 illustrates the distributions of the saccadic 

durations for all drives. The p-values of the statistical tests 

are reported on the top of the plots. It shows no statistically 

significant difference (p > 0.1) in saccadic durations 

between the drives, indicating that the time gap between 

two successive fixations of distracted drives was like that of 

the standard drives. Therefore, saccade duration may not be 

a suitable feature for classification. 
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Young Cohort (Fixation Duration) 

 

 

Fig. 6 Boxplots illustrate fixation duration for the young cohort. 

The p-values for the paired t-tests are shown at the top of the 

box plots. The differences are statistically significant, with 99% 

confidence interval for the texting distractions 

 

Old Cohort (Fixation Duration) 

 

  

Fig. 7 Boxplots illustrate fixation duration for the old 

cohort. The p-values for the paired t-tests are shown at the 

top of the box plots. The differences are statistically 

significant, with 99% confidence interval for the texting 

distractions 

Fig 6 and Fig 7 illustrate boxplots of fixation durations 

grouped by the young and old cohorts. Overall, the 

distributions of each cohort are like those observed for the 

entire group, meaning fixation duration for the cognitive and 

emotional distractions are not significantly different (p > 

0.01) compared to the baseline driving. Still, it is pretty 

different for the texting distraction (p < 0.01). Interestingly, 

the young cohort exhibits different texting behaviour than the 

old cohort. The young cohort has a higher fixation duration 

than the old cohort, indicating that compared to the old 

group, the young group looks on the road for longer, 

resulting in better driving performance. 

4.3.  Machine Learning Classifiers 

None of the three eye-gaze features revealed any 

statistically significant difference between the cognitively 

distracted drives (C1 and C2) and the usual drive and 

between the emotionally distracted drives (E1 and E2) and 

the standard drive. Therefore, these two distracted drives 

were dropped from the classification analysis. In the texting 

distracted drives, the saccade duration feature was dropped 

because it failed the statistical significance test. Therefore, 

the fixation count and duration feature were fed to machine 

learning (ML) algorithms to evaluate the features' predictive 

power in detecting texting distracted drives. 

 

The input data consisted of two sets: One to classify T1 

from NT1 and the other to classify T2 from NT2. Each 

dataset consisted of two features (fixation count and fixation 

duration) and a target feature of binary class (texting 

distracted drive and regular drive). Each dataset had 52 

samples (26 participants * 2 driving phases). Each dataset 

was divided into training and test sets with a 60/40 split. The 

model was trained on a training set using the 5-fold cross-

validation. Five-fold was chosen in place of the standard 10-

fold to minimize the overfitting issue of the smaller dataset. 

 

A total of four machine learning algorithms were 

explored as part of this study. Specifically, the decision tree 

(DT) classifier was used from the tree-based classifiers. The 

Naïve Bayes (NB) classifier was used from the Bayesian 

classifiers. From the SVM (Support Vector Machine) 

classifiers, both linear and radial kernels were selected to use 

SVM-L (with the linear kernel) and SVM-R (with the radial 

kernel). The default parameters that the R tool provides for 

each classifier were used in the analysis. 

Table 1. Classification accuracies for detecting texting (T1) for 

distracted driving. The kappa values are shown within parentheses. 

ML 

Algorithm 

Fixation 

Count (A) 

Fixation 

Duration (B) 
(A) + (B) 

DT 80% (60%) 95% (90%) 95% (90%) 

NB 70% (40%) 95% (90%) 95% (90%) 

SVM (L) 75% (50%) 95% (90%) 95% (90%) 

SVM (R) 75% (50%) 95% (90%) 95% (90%) 
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Table 2. Classification accuracies for detecting texting (T2) for 

distracted driving. The kappa values are shown within parentheses 

ML 

Algorithm 

Fixation 

Count (A) 

Fixation 

Duration (B) 
(A) + (B) 

DT 75% (50%) 75% (50%) 85% (70%) 

NB 70% (40%) 85% (70%) 90% (80%) 

SVM (L) 65% (40%) 85% (70%) 90% (80%) 

SVM (R) 65% (50%) 85% (80%) 85% (70%) 

 

Table 1 summarizes the classification accuracies. It 

reports higher accuracy and kappa values for the fixation 

duration feature, indicating that it offers discriminatory solid 

power between the two drives. For the T1 drive, all four 

algorithms perform equally well for the fixation duration 

feature but perform suboptimal for the fixation count feature.  

 

The same observations can be made from the analysis of 

the T2 drive, in which the algorithms perform better for the 

fixation duration feature than for the fixation count feature.  

 

However, combining fixation count with fixation 

duration ((A) + (B)) does improve overall accuracy and the 

kappa value of the algorithms, specifically for the T2 drive, 

suggesting that both features should be used in the 

classification. 

 

Overall, accuracy and the kappa values are higher for the 

T1 drive than for the T2 drive. The reason for the higher 

accuracy of T1 is that the T1 distributions for fixation count 

and fixation duration were more concentrated than that of the 

T2 distributions, and they were a bit less overlapping with 

the NT1 distributions than that of T2 overlapping with NT2.  

It is interesting to find out what made the participants 

change their behaviour in the T2 drive. This, however, is out 

of the scope of this research work and will be considered in 

future analysis. 

5. Conclusion 
This paper presents an eye movement analysis for 

detecting texting and distracted driving. Three types of eye 

movement parameters (fixation count, fixation duration, and 

saccadic duration) were analysed. The parameters were 

compared against everyday driving (without texting); the 

participants significantly altered their fixation patterns while 

texting (p < 0.01). The cognitive and emotional distractions 

do not exhibit such a dramatic change in the fixation 

patterns. The texting distraction affects driving performance, 

too. The study results reveal that participants significantly 

altered their driving by lowering driving speed and 

acceleration to compensate for more considerable lane 

departure, thus decreasing the risk of an accident. 

Furthermore, machine learning algorithms were 

explored to classify texting distracted drives with 90% and 

above accuracy. This allows the development of a feedback 

system to alert drivers in realtime about the possible danger 

of texting and take away some driving controls if texting 

continues despite the alert. Of course, more research is 

necessary to handle this alteration of machine-human 

interactions in realtime. 

Since eye fixation data offers discriminatory solid 

power, the next step is to extend this offline analysis to a 

realtime analysis. The development of a machine learning 

classifier that can predict texting distractions as early as 

possible could be facilitated by using a mere few seconds of 

eye gaze data from the start of texting. 
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